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On a Class of Solutions of Nonlinear Boltzmann Equations 
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In a recent paper by Krook and Wu, the nonlinear Boltzmann equation for 
an infinite, spatially homogeneous, isotropic monoatomic gas of constant 
density and kinetic energy and with an elastic differential cross section that 
varies inversely as relative speed has been reduced to an infinite sequence of 
moment equations. The present note observes that the moment equations 
are successively integrable and shows that as time goes to infinity, the 
distribution tends to be Maxwellian. 

KEY W O R D S  : Bol tzmann equat ion ; special cross section ; exact solut ion ; 
moment  equations. 

1. I N T R O D U C T I O N  

The state of the gas at t ime t is described by a dis t r ibut ion funct ion nf(v, t), 
where n is the cons tant  n u m b e r  density, v is a velocity variable, and  v = ]vl. 

Conservat ion  of mass and  energy imply that  

f f (v ,  t) day = 1, f v2f(v, t) d3v = 3KT/m = 3fi 2 (1) 

where T is the cons tant  kinetic temperature,  m is the molecular  mass, and K 

is Bol tzmann ' s  constant .  
The differential cross section for elastic scattering is taken as 

~(g, x) = K/g (2) 

where K is a constant ,  g is the relative speed, and  X is the scattering angle in 
the center-of-mass system. 
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Then the nonlinear Boltzmann equation is equivalent to the following 
sequence of moment equations m: 

dM~ 1 
d--'7-" + M~ = k +---'-1 ~-, MmM~-=, k = O, 1, 2 .... (3) 

m = O  

where 

M~ = 2(252)~r(k + 3) v2~f(v, r) day, k = O, 1, 2 .... (4) 

M~ is called the kth moment and 

r = 47rnkt (5) 

Using (4), one can replace (1) by 

Mo(r) = 1, M~(r) = 1 (6) 

If, as r --+ 0% the distribution tends to be Maxwellian, then we must have 

M~(m) = 1 for k = 0, 1, 2,... (7) 

For  given (6), Krook and Wu (*~ have obtained some particular solutions of  
(3), satisfying the "boundary  conditions" (7). From these solutions of (3), 
the distribution functionf(v,  r) has been obtained by inverting (4). However, 
in the present note we shall see that the complete set of solutions of  (3) that 
satisfy (6) can be obtained by successive integration and that Eqs. (7) follow 
from (3) and (6) and need not be postulated as "boundary  conditions." 

2. SOLUTIONS OF THE M O M E N T  EQUATIONS 

Equations (3) can be explicitly written as 

clMo/dz + Mo = Mo 2 

dM1/dr + M1 = MoMI" 

dM2/dr + M2 -- �89 + M1 u) (8) 

dMa/dr + Ma = �89 + MIM2) 

dM4/dr + M4 = {(2MoM4 + 2M,  Ma + M2 2) 

and so on. 
We note that the first two equations of  (8) are automatically satisfied by 

(6). All other moment equations can be written as 

dMk 1 
d-----~ + Mk = k +---'-~ (2MoM~ + 2M1M~_l + 2M2Mk-2 

+ "" + 2M~k_ 1)j2M(~ + 1~/2 when k is odd and >/2 

dm~ 1 (9) 
+ M~ = k +-----~ (2MoM~ + 2M~M~_z + 2M2M~_2 

d----~ 

+ ...+ 2M(~I2~_~M(~12)+~ + M~I2 ) when k is even and >2  
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Using (6), one can rewrite (9) as 

dMz. d~ + k - - - ~ ] M e  - k + l k  - 1 1 (2M~_1 + 2M2Mk_2 + ...+ 2M(~-I~12M(k+l~12) 

when k is odd  and t> 2 

(10) 
dMe k - 1 1 (2M~_ ~ + 2M2M~-  2 
d--4- + ~ M~ = k +-----~ 

+ "" + 2M~/2)- 1M(~2~ + i + M~/2) when k is even 
and 1> 2 

Equat ions  (10) have the following solution: 

e - [(/c - 1)/(/c + 1)]~ 
M~ = A~e -t(k-1)/<k+i~ + k + 1 ~ et(~-i>/(~+lm(2Mk-i + 2M2Mk_2 

+ --. + 2M(~-l>t2M(~+i~z) dT when k is odd  and >~2 (11) 

e [(k-l)/(k+l)]~ f et~k-l~/(~+lm(2Mk-1 + 2M~M~_2 Mk = A~e -t(~-1~'(~+1~* + k + 1 

+ "" + 2M<kl2~-~M(k~/2+~ + M~z)  dr when k is even and >i2 

where A~ (k = 2, 3, 4, 5,...) are constants.  

We note  that  for  any k /> 2, M~ can be determined f rom (11) if  all o f  
M~_I ,  M~_~ .... are known.  Thus M~ can be determined since Mo and M~ are 
given by (6). Similarly, Ma can be determined f rom M~, M~, and M~, and so 
on. The  constants  of  integrat ion A~ can be determined if M~(0), k = 0, 1, 2, 3, 
are known.  

The first few momen t s  can be writ ten as 

Mo = 1, M~ = 1, M~ = 1 + A~,e -v~, Ma = 1 + 3A~e -v~ + Aae -~/~ 

M~ = 1 + 6A2e -~/a + 4Aae -~/2 - 2 A ~ e  - ~ a  + A~e -~/~ (12) 

;From Eqs. (12), we note  that  all of  the first five momen t s  are of  the 
fo rm 

M~ = 1 + �89 - 1)A~e -~`~ + ~k(k - 1)(k - 2)Aae - m  + s B~e -%,  ~ (13) 
I- 

where Az, Aa, B~ ,  a ~  are constants  and a ~  > �89 We shall show that  in fact  
all the moment s  are of  the fo rm (13). The  p r o o f  is by mathemat ica l  induction.  

Let  the M~ for  k = l, l - 1, I - 2 .... be of  the fo rm (13). We shall show 
that  M~+~ is also o f  the fo rm (13). F r o m  (11) we get 

e-  ~/" + ~ f e~( z + ~~I dT (14) M~+z = A~+~e -"~"+~ + l +'-"--"-~ 
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where 

I = 2Mz + 2M2Mt_ l  + 2MaMl_2 + ... + 2M~/2M(z/2>+I, /even 

= 2M~ + 2M2MI-1  + 2MaMa_2 + "'" + 2M(~-I)I2M(~+a)I2 (15) 
+ 2 M(z + 1)/2, l odd 

IfM~, Mz-1, Mz-2 .... are of the form (13), then it is easy to see from (15) that 
I is of the form 

( ~  r ( r -  1)) (f~, r ( r - 1 ) ( r - 2 ) )  I = l + 2A2e -~l~ + 2Aae -~12 
\~=2 2 \~=3 6 

+ ~ Dl+l,~e-~,.~., ~ (16) 
T 

where A2, As, Dz+~,~, a~+~,~ are constants and az+~,~ > �89 From (14) and (16) 
one can easily see that Mz+~ is of the form (13). 

Thus M~+~ is of the form (13) i rma,  Mr-z,  MI_2 .... are of the form (13) 
and we have already seen that Mo, M~, M2, M3, and M4 are of the form 
(13). Thus the Mk for k = 0, 1, 2, 3 .... are all of  the form (13). 

3. C O N C L U S I O N  

Thus, although we have not been able to give all the moments explicitly, 
we have a set of equations [Eqs. (6) and (11)] from which all the moments can 
be successively determined. We also know that all the moments are of the 
form (13), from which we note that as ~----~ oo, M~-+ 1 for k = 0, 1, 2 .... ; 
which means that as time goes to infinity the distribution tends to be 
Maxwellian. 

As pointed out by Krook and Wu, (1~ knowledge of the nature off (v ,  t) 
for large values of v is of utmost importance, because large deviation of 
f(v, t) from the Maxwellian distribution for large values of v can significantly 
alter the calculated values of certain gas reaction rates. The moments calcu- 
lated in the present work can be used to put an upper limit on the number of 
particles that exceed any given velocity. To this end, from Tchebycheff's 
theorem, (2~ we get for any Vo > 0, 3 

P(v 2T > V2o r) ~ E(v2T)/v~T), r = 1, 2, 3 .... (I) 

where P(x  > ~) - Probability of x > a, 

E(g(v, t)) - f g(v, t)f(v, t) day 

From (4) and (I) and noting that P(v > Vo) = p(v2T > v~), we get 

P(v > Vo) ~< 2(2fl2)rI'(r + ~)Mr, r = 1, 2, 3 .... (II) 
vr~ v~r 

3 Roman numerals are used to denote inequalities. 
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The inequality (II) for each value of  r sets an upper limit on P(v > Vo). 
Obviously the value of r that gives the least value for the right-hand side of  
(II) also gives the most accurate upper limit for P(v > Vo). But since we do 
not have explicit expressions for all the moments,  we are not in a position to 
know which value of r will give the most accurate upper limit. However, we 
can take a few values of  r to see which one serves our purposes better; e.g., 
r = 1 gives 

e ( v  > Vo) <~ 3/3~/Vo 2 (iII) 
r = 2 gives 

P(v > vo) ~< (15fi4/v04)(l + A2e -~t~) (IV) 

For  A2 < 0 (which is equivalent to saying that Ms < 1 at ~, = 0) and 
vo ~ > 5/32 then the inequality (IV) gives the more accurate upper limit. On 
the other hand, if As > 0 and v~ 2 < 5t32, then it would be better to use (III). 
Similar inferences can be drawn for other values of  r as well, but things will 
be increasingly more complicated. 
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